BPM and Data Analytics in administrative management to improve business processes

Authors

DOI:

https://doi.org/10.56368/Entrelineas315

Keywords:

business process automation, data analytics, business management, artificial intelligence, operational efficiency

Abstract

For management, in the context of business and economics, a resource is any factor necessary to achieve a goal or carry out the activities that a company needs to fulfill its operations and achieve its purposes. In administrative management, one way to improve business processes can be done with the help of Business Process Management and Data Analytics, which currently increasingly use artificial intelligence. With the objective of describing the implementation of Business Process Management and Data Analytics in administrative management, supported by artificial intelligence, a non-experimental design has been used to develop a qualitative and transversal study, where the procedure of Data collection was carried out in nine steps: definition of the scope of the research; source collection; selection of documents and authors; compilation of authors and years; document review; Data extraction; organization, validation and analysis of the collected data. The results showed the use of analytics in the business context and the improvement of repetitive processes with the use of artificial intelligence, through BPM, concluding that the implementation of artificial intelligence and these two tools improve individual and business work by reducing labor costs and reducing the need for a greater number of individuals to carry out activities.

Downloads

Download data is not yet available.

References

Agrawal, A., Gans, J. & Goldfarb, A. (2017). What to expect from artificial intelligence. MITSloan Management Review. MITSLoan Management Review, 1-9. https://agrawal.ca/s/What-to-Expect-From-Artificial-Intelligence-b88l.pdf

Babb, B. (2024). The In-Depth Handbook to Business Process Management (BPM). https://www.pipefy.com/blog/business-process-management-bpm/

Barón Ramírez, E., García Estrella, C.W. & Sánchez Gárate, S.K. (2021). Inteligencia de negocios y análisis de datos en procesos de negocio. Revista Científica de Sistemas e Informática, 1 (2), 38–53. https://doi.org/10.51252/rcsi.v1i2.167

Bonitasoft. (2013). ¿Qué es una aplicación basada en procesos? https://www.bonitasoft.com/

Bonitasoft. (2018). Un BPM más inteligente con IA. https://es.bonitasoft.com/noticias/un-bpm-mas-inteligente-con-ia-0

Brynjolfsson, E. & Mcafee, A. (2017). Artificial intelligence, for real. Harvard Business Review, 1, 1-31. https://acortar.link/pWBqso

Davenport, T. H. (2013). Analytics 3.0. Harvard business review. In Harvard Business Review. https://hbr.org/2013/12/analytics-30

Davenport, T. H. (2018a). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73-80. https://doi.org/10.1080/2573234X.2018.1543535

Davenport, T. H. (2018b). The AI advantage: How to put the artificial intelligence revolution to work. MIT Press.

Del Giudice, M., Soto-Acosta, P., Carayannis, E., & Scuotto, V. (2018). Emerging perspectives on business process management (BPM): IT-based processes and ambidextrous organizations, theory and practice. Business process management journal, 24(5), 1070-1076. https://doi.org/10.1108/BPMJ-09-2018-336

Dirican, C. (2015). The impacts of robotics, artificial intelligence on business and economics. Procedia-Social and Behavioral Sciences, 195, 564-573. https://doi.org/10.1016/j.sbspro.2015.06.134

Fuentes, N., Osorio, G. & Mungaray, A. (2016). Capacidades intangibles para la competitividad microempresarial en México. Problemas del Desarrollo, 47(186), 83-106. https://acortar.link/KuMqe7

Geiger, M., Harrer, S., Lenhard, J., Casar, M., Vorndran, A. & Wirtz, G. (2015). BPMN conformance in open source engines. In 2015 IEEE Symposium on Service-Oriented System Engineering, 21-30. https://joerglenhard.wordpress.com/wp-content/uploads/2013/05/geiger2015bpmnconformancein.pdf

Gironés Roig, J. (2013). Analítica de negocio. UOC.

Haefner, N., Wincent, J., Parida, V. & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162, 120392. https://doi.org/10.1016/j.techfore.2020.120392

Koehler, J. (2019). A Guide to Organizational Resources and How to Manage Them. In University of Arkansas Grantham, https://www.uagrantham.edu/blog/a-guide-to-organizational-resources-and-how-to-manage-them/

Kulkov, I. (2021). The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technology in Society, 66, 101629. https://doi.org/10.1016/j.techsoc.2021.101629

Medina Fernández de Soto, J. E. (2010). Modelo integral de productividad, aspectos importantes para su implementación. Revista EAN, (69), 109-119. https://acortar.link/rNKTTQ

Mora-Torres, C. J. (2017). Las fuentes de financiamiento a corto plazo como estrategia para el incremento de la productividad empresarial en las PYMEs. Dominio de las Ciencias, 3, 338-351. https://doi.org/10.23857/dc.v3i1.401

Nunes Lins Espíndola, S. C., Gonzaga de Albuquerque, A. P., de Arruda Xavier, L., Coutinho de Melo, F. J. & Dumke de Medeiros, D. (2019). The Standardization of administrative processes: a case study using continuous improvement tool. Brazilian journal of operations & production management, 16(4), 706-723. https://doi.org/10.14488/BJOPM.2019.v16.n4.a15

Processmaker. (2024). Proceso empresarial potenciado por IA Automatización simplificada. https://www.processmaker.com/es/#

Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Akter, S. (2022). Understanding dark side of artificial intelligence (AI) integrated business analytics: assessing firm’s operational inefficiency and competitiveness. European Journal of Information Systems, 31(3), 364-387. https://doi.org/10.1080/0960085X.2021.1955628

Rikhardsson, P. & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37-58. https://doi.org/10.1016/j.accinf.2018.03.001

Ryzhakova, G., Ryzhakov, D., Petrukha, S., Ishchenko, T. & Honcharenko, T. (2019). The innovative technology for modeling management business process of the enterprise. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 4024-4033. https://acortar.link/AsLHmk

Santos-Vijande, M. L., López-Sánchez, J. Á. & Trespalacios, J. A. (2012). How organizational learning affects a firm's flexibility, competitive strategy, and performance. Journal of Business Research, 65(8), 1079-1089. https://doi.org/10.1016/j.jbusres.2011.09.002

Stefanos, T. (2021). Administrative process reengineering using a business process management system (BPMS) (Master Thesis). Technical University of Crete.

Downloads

Published

2024-06-30

Issue

Section

Research articles

How to Cite

Ortega González, F. (2024). BPM and Data Analytics in administrative management to improve business processes. Entrelíneas, 3(1), 52-64. https://doi.org/10.56368/Entrelineas315